Funded by:

NOTTINGHAM RETROFIT ROADMAP

Agencies:

Ministry of Housing, Communities & Local Government

戀

Department for Levelling Up, Housing & Communities

UK Shared Prosperity Fund

Coordination:

Partners:

FOCUS Create. Deliver. Assess.

WELCOME: WHY RETROFIT?

Funded by:

WHY RETROFIT?

The UK has some of the oldest and least energyefficient housing stock in Europe

> of total greenhouse gas emissions are produced by residential buildings in the UK (LETI, 2020, p. 14, 58)

22%

of the buildings that will form the UK 2050 housing stock were built before the introduction of energy performance standards and are far from meeting future energy needs (Passivhaus Trust, 2022, p. 6)

WHY RETROFIT?

4.5 tonnes of CO_2

247k tonnes/year

740k

tonnes/year

61.2% Energy Performance Certificate below C

UK GOVERNMENT 2021. Energy Performance of Buildings Data England and Wales.

UK GOVERNMENT 2021. Energy Performance of Buildings Data England and Wales.

MINISTRY OF HOUSING; COMMUNITIES & LOCAL GOVERNMENT 2018. English Housing Survey Floor Space in English Homes – main report.

UK GOVERNMENT 2021. Energy Performance of Buildings Data England and Wales.

UK GOVERNMENT 2021. Energy Performance of Buildings Data England and Wales.

GETTING TO NET ZERO

Better understanding of what stock exists its current energy performance...

1

2

What energy infrastructure is the stock connected to...

What is the actual condition of the stock...

3

4

What is the evidence base to support measure selection and optimisation...

Funded by:

FOCUS Create. Deliver. Assess.

FUEL POVERTY IN NOTTINGHAM

- In 2020, 20.6% of households were considered to be in fuel poverty, just over 35,000 households
- This significantly higher than the national rate of 13.2% of households

(BEIS, 2022)

Nottingham	
ranked	
6 th	
Among all English LAs	

 Among all English local authorities, Nottingham has the 6th highest rate of fuel poverty

(BEIS 2022)

 Fuel poverty levels in Nottingham are currently higher than they have been at any time over the last 10 years

DEEP AND TYPICAL RETROFIT

Funded by:

How do we Retrofit?

The solution lies in an integrated whole-house retrofit approach to bring existing houses to near net zero energy demand*.

Stage 1 Building fabric optimisation Stage 2 Low-carbon heating systems Stage 3 Renewable energy generation & storage integration

*Performance Target: Part L 2021 notional levels

DEEP AND TYPICAL RETROFIT MEASURES

Whereas deep retrofit involves taking a wide range of measures to reduce a building's energy needs considerably, typical retrofit measures exclude more costly and disruptive measures. Measure can be broken into 3 stages including: Retrofit Stage 1 - building fabric optimiisation; Retrofit Stage 2 - low-carbon heating systems and **Retrofit Stage 3** - renewable energy generation and storage.

Building fabric optimisation key: Deep retrofit measures: 1, 2, 3, 4 & 5 💭 Typical retrofit measures 1, 3, & 5

1. Add loft insulation

2. Add floor insulation

3. Add wall insulation

4. Add energy efficient glazing/doors

5. Draught proofing and airtight envelope

SIMULATION MODELS (ARCHETYPES)

- Four models representing the most typical house types
- Each house considered to be two-storey with similar floor area

DEEP RETROFIT MEASURES

To reduce the number of permutations, this has been done by mapping the cumulative benefits gained from a range of improvements based on the likelihood and construction practicality

1. Base model (as-built): highly permeable and not insulated building envelope

- 2. Added loft insulation
- 3. Added floor insulation
- 4. Added walls insulation
- 5. Added energy-efficient glazing/ doors
- 6. Added draught proofing
- 7. Added extra draught proofing
- Target: Part L 2021 notional levels.
- Heating on from Oct-Mar using occupant profiles
- No cooling systems
- No active design improvements

TYPICAL RETROFIT MEASURES

Typical retrofit excluded more costly and disruptive measures and was based on typical retrofit projects developed in Nottingham:

1. Base model (as-built): highly permeable and not insulated building envelope

2. Added loft insulation

Added floor insulation

4. Added walls insulation

Added energy-efficient glazing/ doors

6. Added draught proofing

7. Added extra draught proofing

- Target: Part L 2021 notional levels.
- Heating on from Oct-Mar using occupant profiles
- No cooling systems
- No active design improvements

U-VALUE & AIRTIGHTNESS LIMITS

Building Energy Regulation	U-values (W/m ² K)				Air permeability		
	Roof	Walls	Floor	Windows	Party wall	(m ^{3/} m²h) @ 50 Pa	3
1965 Building Regulation ⁶ (UK Government, 1965, p. 52, 166)	1.42	1.70	1.42	5.7, 12% wall max.	-		
1976 Building Regulation (UK Government, 1976, p. 4307)	0.60	1.00	1.00	5.7, 12% wall max.	-		3
1985 Building Regulation (UK Government, 1985, p. 3414)	0.35	0.60	0.60	5.7, 12% wall max.	-		uildings
The 1991 Building Energy Regulations (Department of the Environment and the Welsh Office, 1992, p. 5)	0.25	0.45	0.45	5.7, 15% floor	-		Number of B
The 1991 Building Energy Regulations. Part L1A 1995 edition (Department of the Environment and the Welsh Office, 1995, p. 8)	0.20/ 0.25 ⁷	0.45	0.35/ 0.45	3.0/ 3.33	H		
The Building Regulations 2000 Part L1A 2002 (Office of the Deputy Prime Minister, 2002, p. 12)	0.258	0.35	0.25	2.20	-	10.0	
The Building Regulations 2000 Part L1A 2006 (Office of the Deputy Prime Minister, 2006, p. 18)	0.25	0.35	0.25	2.20	-	10.0	
The Building Regulations 2000 Part L1A 2010 . (HM Government, 2010, p. 15)	0.20	0.30	0.25	2.00	0.20	10.0	
The Building Regulations 2010. Part L1A 2013 edition/ 2016 amendments (HM Government, 2016, p. 15)	0.20	0.30	0.25	2.00	0.20	10.0	
The Building Regulations 2010. Part L 2021 (HM Government, 2021b, p. 21)	0.16	0.26	0.18	1.60 1.60 doors	0.20	8.0 or 1.57m³/m²h @4Pa	
Part L 2021 notional building (Ministry of Housing; Communities and Local Government, 2021, p. 113)	0.11	0.18	0.13	1.20 1.00 doors	-	5.0	
Passive House Standard	0.15	0.15	0.15	0.80 0.85 installed	-	0.6 ach at 50 Pa MVHR	

The simulations used models deemed more representative of the housing stock:

- Victorian solid brick house
- Typical post-war (1950) cavity wall house

BUILDING FABRIC OPTIMISATION

END-TERRACE ARCHETYPE

Funded by:

FOCUS Create. Deliver. Assess.

END-TERRACE ARCHETYPE – TYPICAL CHARACTERISTICS

This housing typology represents 20.2% of Nottingham's total housing stock. The typical EPC rating of this housing typology ranges from D-G (75.4%).

Ground Floor

END-TERRACE ARCHETYPE – HEATING DEMAND

The performance of a typical End-Terrace Nottingham housing archetype was considered as was built over four time periods (**prior to 1930, 1930-1970, 1970-1980, and post-1985**),

to determine incremental retrofit performance improvements.

- Heating on from Oct-Mar using occupant profiles
- No cooling systems
- No active design improvements

RETROFIT STAGE 1: BUILDING FABRIC OPTIMISATION

Retrofit Stage 1 – building fabric optimisation

Prior to 1930

Target: Part L 2021 notional levels Heating on from Oct-Mar using occupant profiles No cooling systems

Retrofit Stage 1 – building fabric optimisation

1930-1970

Target: Part L 2021 notional levels

Heating on from Oct-Mar using occupant profiles

No cooling systems

Retrofit Stage 1 – building fabric optimisation

1970-1980

Target: Part L 2021 notional levels

Heating on from Oct-Mar using occupant profiles

No cooling systems

Retrofit Stage 1 – building fabric optimisation

Post 1985

Target: Part L 2021 notional levels

Heating on from Oct-Mar using occupant profiles

No cooling systems

END-TERRACE ARCHETYPE – TYPICAL RETROFIT ONLY

Retrofit Stage 1 – building fabric optimisation

Prior to 1930

Target: Part L 2021 notional levels Heating on from Oct-Mar using occupant profiles No cooling systems

END-TERRACE ARCHETYPE – TYPICAL RETROFIT ONLY

Retrofit Stage 1 – building fabric optimisation

1930-1970

Target: Part L 2021 notional levels

Heating on from Oct-Mar using occupant profiles

No cooling systems

RETROFIT STAGE 2: LOW-CARBON HEATING SYSTEMS & & RETROFIT STAGE 3: RENEWABLE ENERGY GENERATION

Retrofit Stage 2 – integration of low-carbon heating systems*

Prior to 1930

*A comparison of annual energy consumption and carbon emissions values after integration of low-carbon heating systems (with and without air source heat pumps [ASHP]).

Retrofit Stage 2 – integration of low-carbon heating systems*

1930-1970

*A comparison of annual energy consumption and carbon emissions values after integration of low-carbon heating systems (with and without air source heat pumps [ASHP]).

Retrofit Stage 2 – integration of low-carbon heating systems*

1970-1980

*A comparison of annual energy consumption and carbon emissions values after integration of low-carbon heating systems (with and without air source heat pumps [ASHP]).

Retrofit Stage 2 – integration of low-carbon heating systems*

Post 1985

*A comparison of annual energy consumption and carbon emissions values after integration of low-carbon heating systems (with and without air source heat pumps [ASHP]).

END-TERRACE ARCHETYPE – HEATING SYSTEMS

Retrofit Stage 2 – annual running cost comparison- winter 2021*

prior to 1930, 1930-1970, 1970-1980 and post-1985

4600 4400 4200	End-Terrad (ASHP) hea	ce house - Co ating systems	omparative and s - Including c	nual running daily standinູ	energy costs g charge- Cap	between gas period: Oct 2	and low-carbo 021- March 20	on 22	Gas price cap (Oct 2021- March 2022) (Ofgem, 2022b) Gas daily standing charge (Oct 2021- March 2022) (Ofgem, 2022b)	0.04 GBP per kWh 0.26 GBP
4000 3800 G 3600									Gas price cap (Oct 2022- Dec 2022) (Ofgem, 2022b)	0.15 GBP per kWh
0 3400 d 3200 0 3000 0 3000 0 2800									Gas daily standing charge(Oct 2022- Dec 2022) (Ofgem, 2022b)	0.28 GBP
sts 2600 2400 2200 2200									Natural Gas Carbon Emission Factor - SAP 10.2 (BRE, 2022, p. 189)	0.210 kgCO ₂ e/ kWh
ua 1800 1600 1400 1200 1000 800 600 400	11h	10h	10a	000	000	000	000	done	Electricity price cap (Oct 2021- March 2022) (Ofgem, 2022b) Electricity daily standing charge(Oct 2021- March 2022) (Ofgem, 2022b)	0.21 GBP per kWh 0.25 GBP
200	1: Base model as- built, non-insulated, highly infiltrated	2: Added loft insulation in model #1	3: Added floor insulation in model #2	4: Added external wall insulation in model #3	5: Added energy- efficient windows & doors in model 4#	6: Added draught- proofing and airtight layer in model #5	7: Further draught- proofing and airtight layer in model #6	8:PVs added in model #7	Electricity price cap (Oct 2022- Dec 2022) (Ofgem, 2022b) Electricity daily standing charge(Oct 2022- Dec 2022) (Ofgem, 2022b)	0.52 GBP per kWh 0.46 GBP
á	It varies according to the construction period	≤ 0.11 W/m²K	It varies according to the construction period ≤ 0.13 W/m²K	It varies according to the construction period ≤ 0.18 W/m²K	Triple glazing ≤ 1.20 W/m²K Doors ≤ 1.00 W/m²K	8 m ³ /m ² .h @50Pa	5 m ³ /m ² .h @50Pa		Electricity Grid Carbon Emission Factor - SAP 10.2 (BRE, 2022, p. 189)	0.136 kgCO₂e/ kWh
			Building	fabric optimisation m	neasures					
	 Prior to 1930, 0 1930-1970, Ga 1970-1980, Ga Post 1985, Gas 	Bas heating system (i s heating system (inc s heating system (inc s heating system (inc.	nc. daily charge) c. daily charge) c. daily charge) . daily charge)		 Prior to 1930, Lo 1930-1970, Low 1970-1980, Low Post 1985, Low- 	w-carbon heating sys -carbon heating syster -carbon heating syster carbon heating systen	tem (ASHP) inc. daily o m (ASHP) inc. daily ch m (ASHP) inc. daily ch n (ASHP) inc. daily ch	charge arge arge arge		

Gas boiler seasonal efficiency: 0.89; seasonal coefficient of performance (SCOP): 0.8 ASHP seasonal efficiency: 3.35; SCOP: 3.0

END-TERRACE ARCHETYPE – HEATING SYSTEMS

Retrofit Stage 2 – annual running cost comparison- winter 2022*

prior to 1930, 1930-1970, 1970-1980 and post-1985

Gas boiler seasonal efficiency: 0.89; seasonal coefficient of performance (SCOP): 0.8 ASHP seasonal efficiency: 3.35; SCOP: 3.0

END-TERRACE ARCHETYPE – DEEP RETROFIT NET LIFETIME COST – ALL AGES (PRE-1930 TO POST-1985)

 $(GIA = 89.7m^2)$

END-TERRACE ARCHETYPE – DEEP RETROFIT NET LIFETIME COST – ALL AGES (PRE-1930 TO POST-1985)

 $(GIA = 89.7m^2)$

END-TERRACE ARCHETYPE – DEEP RETROFIT CARBON COST EFFECTIVENESS – ALL AGES (PRE-1930 TO POST-1985)

 $(GIA = 89.7m^2)$

End-Terrace Dwelling Deep Retrofit Average Carbon Cost Effectiveness (Winter 2021 Energy Prices)

END-TERRACE ARCHETYPE – DEEP RETROFIT CARBON COST EFFECTIVENESS – ALL AGES (PRE-1930 TO POST-1985)

 $(GIA = 89.7m^2)$

End-Terrace Dwelling Deep Retrofit Average Carbon Cost Effectiveness (Winter 2022 Energy Prices)

NOTTINGHAM RETROFIT CASE STUDIES PERFORMANCE ASSESSMENT

Funded by:

FOCUS Create. Deliver. Assess.

SIMULATION MODELS (ARCHETYPES)

- The case studies are part of the DZ2 Project and include different archetypes: End-Terrace, Mid-Terrace, and flats.
 End and Mid-Terrace houses are oriented both east-west and west-east while flats are oriented north-south only.
- The End-Terrace, Mid-Terrace archetypes are 3-storey, 3bedroom houses.
- The flats (First floor; Mid-Terrace flat & Ground floor; end terrace flat) are 1- bedroom properties.

Mid-Terrace House & End-Terrace House

Mid-Terrace Flat (First Floor) & Endterraced Flat (Ground Floor)

Site Plan. Based on Nottingham City Council (2022)

TYPICAL RETROFIT MEASURES Typical retrofit excluded more costly and disruptive measures and was based on typical retrofit projects developed in Nottingham: 1. Base model (as-built): highly permeable and 1. Base model (as-built) not insulated building envelope 3. Floor insulation 2. Loft insulation 2. Added loft insulation 3 Added floor insulation 4. Added walls insulation 4. Wall insulation Added energy-efficient glazing/ doors 5. Energy-efficient glazing/ doors 8 5 m³/m².h 6. Added draught proofing m³/m².h DRAUGHTS FROM @50Pa DRAUGHTS FROM VENTILATED LOFT @50Pa ENTILATED LOF DRAUGHTS AIRTIGH AIRTIGHT LAYERS LAYERS 7. Added extra draught proofing DRAUGHTS FROM FLUE ROM FLUE DRAUGHT DRAUGHTS DRAUGHTS THROUGH DRAUGHTS AROUND THROUGH AROUND AROUND WINDOWS AROUND AND UNDER WINDOWS AND UNDER DOORS DOORS Target: Part L 2021 notional levels. DRAUGHS IF THERE IS VENTILATED FLOOR VOID DRAUGHS IF THERE IS VENTILATED FLOOR VOID Heating on from Oct-Mar using occupant profiles Optimised model 7. Draught proofing 6. Draught proofing and No cooling systems and airtight envelope airtight envelope No active design improvements

BUILDING CONSTRUCTION COMPONENTS

As-built (prior to 1930)

	Archetype 1	Archetype 2	Flats
	End-Terrace	Mid-Terrace	(First floor; Mid-Terrace flat)
			(Ground floor; End-Terrace flat)
Characteristics	3-storey 3-bedroom		1-bedroom flats
Ext. Wall	1. 13mm plaster		1. 13mm plaster
	2. 215mm existing solid brick		2. 215mm existing solid brick
	3. 13mm plaster		3. 13mm plaster
Roof	1. Existing insulation: 90mm insulation in th	ne sloped roof (warm) and 130	1. 100m existing insulation Flat ceiling (cold roof)
	mm in the ceiling (cold); 100mm gable wall	s (as per architectural drawings).	2. Existing plasterboard ceiling
	2. Existing plasterboard ceiling		
Part walls	Existing walls:		Existing walls:
	1. 13mm Lime Paster		1. 13mm Lime Paster
	2. 215mm existing solid brick		2. 215mm existing solid brick
	3. 13mm Lime Plaster		3. 13mm Lime Plaster
Internal partitions	Ground floor:		Ground floor flat:
	140mm lath and plaster/ stud walls		140mm and 100mm plaster internal studs / 350mm solid wall
	First floor:		First-floor flats:
	100mm plaster internal studs		Varying wall thickness (assumed 140mm for analysis purposes)
			100mm plaster internal studs
Ground floor	Typical solid ground floor		Typical solid ground floor
Intermediate floors	Assumed timber construction		Assumed timber construction
	1. 19mm timber flooring on 100 mm joists		1. 19mm timber flooring on 100 mm joists
	2. 12.5mm plasterboard ceiling	2. 12.5mm plasterboard ceiling	

BUILDING CONSTRUCTION COMPONENTS

Optimised

	Archetype 1 End-Terrace	Archetype 2 Mid-Terrace	Flats (First floor; Mid-Terrace flat) (Ground floor: End-Terrace flat)
Characteristics Ext. Wall (≤ 0.18W/m ² K target)	 3-storey 3-bedroom Proposed external walls 1. 13mm plaster 2. 215mm existing solid brick 3. 13mm plaster 4. 200mm rock wool insulation (160mm EWI with Soltherm brick slips wher 50mm EWI by the access only on Archetype 5. Base Coat + mesh+ colour primer + finish 	n thicker wall 280mm brick wall); 1) ing coat (10mm)	 1-bedroom flats Proposed external walls 1. 13mm plaster 2. 215mm existing solid brick 3. 13mm plaster 4. 200mm rock wool insulation (160mm EWI with Soltherm brick slips when thicker wall 280mm brick wall); 5. Base Coat + mesh+ colour primer + finishing coat (10mm)
Roof Warm roof, sloped Insulation (≤ 0.12 W/m ² K target) Cold roof, flat insulation (≤ 0.10W/m ² K target)	Proposed roof: Flat ceiling 'a' (cold roof): 1a. Replace existing insulation by 450mm ro 2a. Plasterboard ceiling Sloped roof 'b' (warm roof): 1b. 40mm Xtratherm Safe-R SR/PR between ventilation to avoid condensation) 2b Plasterboard ceiling Sloped roof 'c' (cold roof): 3c. 40mm Xtratherm Safe-R SR/PR between ventilation to avoid condensation) 3c. 112.5mm Xtratherm Safe-R SR/PR below 3c. Plasterboard ceiling	ock wool insulation 9 rafters (90mm – 50mm 90mm rafters (50mm left for 9 rafters	Flat ceiling (cold roof): 1a. Replace existing insulation by 450mm rock wool insulation (U-value target 0.11 W/m ² K) 2a. Plasterboard ceiling

END-TERRACE ARCHETYPE

Funded by:

FOCUS Create. Deliver. Assess.

END-TERRACE ARCHETYPE – TYPICAL CHARACTERISTICS

- The End-Terrace archetypes are 3storey, 3-bedroom houses.
- They are oriented both East-West and West-East

End-Terrace House

RETROFIT STAGE 1: BUILDING FABRIC OPTIMISATION

END-TERRACE ARCHETYPE – TYPICAL RETROFIT

Retrofit Stage 1 – building fabric optimisation

Prior to 1930

End Terraced house - Heating demand considering building fabric optimisation measures

Target: Part L 2021 notional levels Heating on from Oct-Mar using occupant profiles No cooling systems No active design improvements

RETROFIT STAGE 2: LOW-CARBON HEATING SYSTEMS & RETROFIT STAGE 3: RENEWABLE ENERGY GENERATION

END-TERRACE ARCHETYPE – TYPICAL RETROFIT

Retrofit Stage 2 – integration of low-carbon heating systems*

Prior to 1930

*A comparison of annual energy consumption and carbon emissions values after integration of low-carbon heating systems (with and without air source heat pumps [ASHP]).

END-TERRACE ARCHETYPE – HEATING SYSTEMS

Retrofit Stage 2 – annual running cost comparison- winter 2021 & winter 2022*

prior to 1930

Gas boiler seasonal efficiency: 0.89; seasonal coefficient of performance (SCOP): 0.8 ASHP seasonal efficiency: 3.35; SCOP: 3.0

ALL ARCHETYPES (EXCL. DETACHED) – ESTIMATED COSTS

Retrofit Stage 1 only*

Case study performance assessment data findings

ALL ARCHETYPES (EXCL. DETACHED) – ESTIMATED COSTS

Retrofit Stage 2 and 3 only*

Case study performance assessment data findings

END-TERRACE ARCHETYPES – ESTIMATED COSTS

Retrofit Stage 1 only*

Case study performance assessment data findings

END-TERRACE ARCHETYPES – ESTIMATED COSTS

Retrofit Stage 2 and 3 only*

Case study performance assessment data findings

PER ARCHETYPE – ESTIMATED COSTS

Cost variation- Retrofit per archetype*

Case study performance assessment data findings

ALL ARCHETYPES – ESTIMATED COSTS COMPARISON

Retrofit Stage1, 2 and 3*

Case study performance assessment data findings

MORE INFORMATION

- Version number: v1.0_26.10.22
- Detailed information: See the Nottingham Carbon Neutral Housing Report, available here: <u>https://www.nottinghamcedi.org/downloads/</u>
- Disclaimer: This information has been generated and compiled as part of an ongoing research project. Any information herewithin must be considered within the scope of current legislative requirements.
- Acknowledgements: This project is funded by the UK Government through the UK Community Renewal Fund. The UK Community Renewal Fund is a UK Government programme for 2021/22. This aims to support people and communities most in need across the UK to pilot programmes and new approaches to prepare for the UK Shared Prosperity Fund. It invests in skills, community and place, local business, and supporting people into employment. For more information, visit: <u>https://www.gov.uk/government/publications/uk-community-renewal-fund-prospectus</u>

